Днк и гены. Молекула ДНК человека

Жизнь ДНК (дезоксирибонуклеиновых кислот)

Определение понятия "ДНК"

Ген - это совокупность сегментов ДНК, обуславливающих образование либо молекулы РНК, либо белкового продукта (Сингер М., Берг П., 1998).

У человека около 30000 генов. Во всём объёме ДНК структурные гены (т.е. те, которые кодируют белки, идущие на построение стуктур организма) занимают лишь 3-10%.

Наименьшая функциональная единица ДНК состоит из следующих элементов: структурный ген, регуляторные зоны, регуляторные гены.

Строение молекулы ДНК

Молекулы ДНК имеют вид длинных двойных цепей полимеров – полинуклеотидов, состоящих из мономеров – нуклеотидов. Двойная цепь закручена в спираль. Поэтому ДНК похожа на винтовую лестницу (посмотрите на рисунок вверху). Каждый нуклеотид включает одно из четырех азотистых оснований – аденин (А), гуанин (Г), цитозин (Ц) или тимин (Т), одну молекулу пентозы (пятиуглеродный сахар) и один остаток фосфорной кислоты. Обычно молекула ДНК состоит из двух комплементарных нитей, которые образуют двойную спираль. При этом аденин одной нити находится в паре с тимином другой (стабилизируется двумя водородными связями), а гуанин аналогично связан с цитозином (тремя водородными связями). Последовательность азотистых оснований в молекуле ДНК несет информацию, необходимую для синтеза белков. ДНК - очень длинные молекулы, состоящие из множества нуклеотидов. Например, геном человека состоит из 46 хромосом, основу которых составляют молекулы ДНК, которые в совокупности собраны примерно из 3 млрд нуклеотидны пар.

У эукариот генетический материал находится в ядре клетки в хромосомах. Хромосомы в активном состоянии существуют в виде хроматина. Хроматин содержит около 40% ДНК, 40% гистонов (щелочных белков), около 20% негистоновых хромосомных белков и немного РНК.

Видео: Строение хромосомы

ДНК мы можем отнести к "живым системам", к "живым молекулам" на том основании, что они лежат в основе жизни вообще, а также обладают рядом важнейших свойств живого, в частности, способностью к размножению. ДНК насктолько самостоятельны и самодостаточны, что способны существовать даже вне клетки - в виде вирусов. В своей жизни молекулы ДНК проходят жизненные этапы, напоминающие нам жизнь более сложных биологических систем - живых организмов. Это такие этапы как рождение, созревание, работа (деятельность) и "смерть".

Тема: Строение ДНК

Домашнее задание

  1. Знать и уметь писать структурные формулы нуклеотидов: А, Т, Г, Ц, У.
  2. Знать устройство молекул ДНК и их организацию в хромосомы.
  3. Знать способы связывания нуклеотидов в ДНК по вертикали и горизонтали. Понятие о 3"-5" связях.
  4. Уметь пользоваться таблицей генетического кода для построения молекул пептидов на основе участка ДНК размером от 12 и более нуклеотидов.

Видео: Хромосомы, митоз, репликация

Этапы жизни молекулы ДНК

Рождение (репликация) - созревание (хромосомы) - работа (транскрипция) - управление (регуляция) - видоизменение (мутация) - "смерть"

1. Репликация ДНК - рождение новой дочерней нити ДНК на родительской нити.
2. Созревание ДНК - формирование хромосомы.
3. Транскрипция ДНК - работа ДНК в виде матричного синтеза на ней РНК.
4. Регуляция транскрипции - управление деятельностью ДНК по транскрипции.
5. Репарация ДНК - восстановление повреждённых участков.
6. Изменения структуры ДНК - мутации, транспозоны.
7. Деградация ДНК - разрушение при каждом цикле репликации.

1. Рождение - репликация

Репликация ДНК проходит очень просто, на счёт "раз, два, три", то есть в три этапа: 1) инициация, 2) элонгация, 3) терминация.

1. Инициация - начинание

Мишень для запуска репликации

Репликация огромной молекулы ДНК начинается с возникновения репликативной точки. Эта точка имеет специфическую последовательность богатую парами А-Т. Такие учкастки в ДНК как раз и являются мишенями для белков, инициирующих репликацию. Именно к ним присоединяются специальные распознающие белки, которые обеспечивают присоединение ферментов репликации хеликазы и топоизомеразы (гиразы) и таким образом запускают процесс репликации. Хеликаза расплетает ДНК на две цепи. Образуется репликативная вилка. Молекула ДНК жестко закреплена на ядерном матриксе и не может свободно вращаться при расплетании какого-либо участка. Это блокирует продвижение хеликазы по цепи. Топоизомераза надрезает нити ДНК и снимает структурное напряжение.
В одной репликативной вилке действуют две хеликазы, которые движутся в противоположных направлениях. Разделенные цепи фиксируются ДНК- связывающими белками. Участки формирования репликативной вилки называются «точками ori» (origin - начало). У эукариот одновременно образуется тысячи таких вилок, что обеспечивает высокую скорость репликации.

2. Элонгация - продолжение (удлиннение)

Наращивание дочерних цепей ДНК на двух родительских цепях происходит неодинаково. ДНК- полимераза III прокариот и δ- или α-ДНК-полимеразы эукариот могут осуществлять синтез новой цепи ДНК лишь в направлении 5’>3’, т.к. могут присоединить новый нуклеотид только к углероду в положении 3’, но не в положении 5’.

Цепь с такой направленностью называется лидирующей . На ней синтез дочерней нити ДНК идёт непрерывно. ДНК-полимераза III или δ-полимераза непрерывно присоединяют к ней комплементарные нуклеотиды.

Цепь с полярностью 3’>5’ является отстающей и достраивается по частям (также в направлении 5’>3’). α-ДНК-полимераза (или ДНК-полимераза III) синтезирует на этой цепи короткие участки - фрагменты Оказаки.

Синтез фрагментов Оказаки и лидирующей цепи начинается с образования РНК-праймеров (затравок ) длиной 10-15 рибонуклеотидов ферментом праймазой (РНК-полимеразой). Ни одна из ДНК-полимераз не способна начать синтез ДНК с нуля, а может лишь достраивать существующую цепь. Параллельно с образованием лидирующей цепи или фрагментов Оказаки происходит удаление рибонуклеотидов из праймеров и замена их нуклеотидами ДНК. Замена рибонуклеиновых участков (праймеров) на участки ДНК происходит с помощью β-ДНК-полимеразы, которая имеет как экзонуклеазную, так и полимеразную активность.

Таким образом, репликация невозможна без частичной временной транскрипции.

Скорость репликации (элонгации) ДНК составляет около 45000 нуклеотидов в минуту, таким образом, родительская вилка расплетается со скоростью 4500 об/мин. Это сопоставимо, например, со скоростью вращения охлаждающего вентилятора в компьютере (1300-4800 об/мин).

3. Терминация - завершение (окончание)

Завершение репликации происходит тогда, когда пробелы между фрагментами Оказаки заполнятся нуклеотидами (при участии ДНК-лигазы) с образованием двух непрерывных двойных цепей ДНК и когда встретятся две репликативные вилки. Затем происходит закручивание синтезированных ДНК с образованием суперспиралей.

Правильность репликации обеспечивается точным соответствием комплементарных пар оснований и действием ДНК-полимераз, которые обладают кроме полимеразной, еще и экзонуклеазной активностью и способны распознавать и исправлять ошибки. Если включается некомплементарный нуклеотид, то фермент делает шаг назад, отщепляет его и продолжает полимеразную реакцию. Поэтому процесс репликации является высокоточным.

После завершения репликации происходит метилирование ДНК в участках –GАТС- по аденину (с образованием N-метиладенина) и остаткам цитозина с образованием 5-метилцитозина. Метилирование не нарушает комплементарности цепей и является необходимым для формирования структуры хромосом и регуляции транскрипции генов.

У прокариот, таких как бактерии, ДНК способна реплицироваться, не распрямляясь в линейную молекулу, то есть оставаясь в характерной для неё кольцевой форме.

Видео: П

2. Созревание - формирование хромосомы и хроматина

3. Работа - транскрипция

Видео: Блокировка работы гена

4. Управление - регуляция

5. Восстановление (починка) - репарация

6. Видоизменение - мутация .

7. "Смерть" - деградация при репликации.

Биохимические основы наследственности.

Генетическая роль нуклеиновых кислот.

Нуклеиновые кислоты – биологические полимеры, находятся во всех клетках, от примитивных до сложноустроенных. Впервые обнаружены Иоганном Фридрихом Мишером в1868 г. в клетках, богатых ядерным материалом (лейкоцитах, сперматозоидах лосося). Термин «нуклеиновые кислоты» предложен в 1889 г.

Существует два типа нуклеиновых кислот: ДНК, РНК (АТФ – мононуклеотид). ДНК и РНК являются молекулами – матрицами. ДНК содержится около 6*10 -12 г в соматических клетках: в ядре, митохондриях. РНК входит в состав рибосом, содержится в ядре и цитоплазме.

Изучение и доказательство ведущей роли нуклеиновых кислот в передаче наследственной информации проведено на вирусных частицах. Вирус табачной мозаики известен как вирулентный для табака и для подорожника. Состоит вирусная частица на 95% из белка и на 5% из нуклеиновой кислоты. В вирусных частицах поменяли местами белковый капсид, но через некоторое время белок в обоих штаммах трансформировался в прежнюю форму.

В бактериофагах, поражающих кишечную палочку, белки оболочки фага метили радиоактивной S, а ДНК фага метили радиоактивным Р. В бактериальной клетке, зараженной фагом, образовались частицы фага, в которых был лишь радиоактивный Р.

Строение и функции молекул ДНК и РНК.

Нуклеиновые кислоты – биополимеры нерегулярного строения, мономерами которых являются нуклеотиды. Нуклеотид состоит из остатков трёх веществ: фосфорной кислоты, углевода - пентозы, азотистого основания. В состав нуклеотидов ДНК входит углевод дезоксирибоза, в РНК – рибоза. Остатки пуриновых и пиримидиновых азотистых оснований, входящих в состав ДНК – это аденин, гуанин, цитозин, тимин. В составе молекул РНК – аденин, гуанин, цитозин, урацил.

Нуклеотиды соединяются между собой через остаток фосфорной кислоты одного нуклеотида и углевод другого прочной ковалентной эфирной связью, называемой «кислородный мостик». Связь идёт через 5-ый атом углерода углевода одного нуклеотида к 3-ему атому углерода углевода другого нуклеотида. Последовательность нуклеотидов представляет первичную структуру нуклеиновых кислот. РНК – одиночная полинуклеотидная цепь. ДНК по структуре двойная полинуклеотидная цепь, свёрнутая в спираль.

Вторичная структура ДНК формируется при возникновении второй цепи ДНК, выстраиваемой по принципу комплементарности относительно первой. Вторая цепь противонаправлена первой (антипараллельна). Азотистые основания лежат в плоскости, перпендикулярной плоскости молекулы – это напоминает винтовую лестницу. Перилами этой лестницы являются остатки фосфорной кислоты и углевод, а ступенями азотистые основания.

Азотистые основания, входящие в состав каждого нуклеотида в противонаправленных цепях, способны образовывать между собой комплементарные водородные связи (за счет имеющихся функциональных групп в строении каждого азотистого основания). Адениловый нуклеотид комплементарен тиминовому, гуаниловый – цитозиновому, и наоборот. Сами по себе эти связи непрочные, но «прошитая» многократно по всей длине такими связями молекула ДНК представляет очень прочное соединение.

Комплементарность – это пространственно-структурное и химическое соответствие азотистых оснований друг другу, они подходят друг к другу «как ключ к замку».

В одну молекулу ДНК могут входить 10 8 и более нуклеотидов.

Структура молекулы ДНК как двойной антипараллельной спирали была предложена в 1953 г. американским биологом Джемсом Уотсоном и английским физиком Френсисом Криком.

Молекула ДНК любого живого организма на планете состоит всего из четырёх типов нуклеотидов, отличающихся друг от друга входящими в них азотистыми основаниями: аденилового, гуанилового, тиминового и цитозинового. В этом универсальность ДНК. Их последовательность различна, а число бесконечно.

Для каждого вида живых организмов и для каждого организма отдельно эта последовательность индивидуальна и строго специфична .

Особенность структуры ДНК в том, что химически активные участки молекулы – азотистые основания, погружены в центр спирали и образуют между собой комплементарные связи, а остатки дезоксирибозы и фосфорной кислоты находятся на периферии и прикрывают доступ к азотистым основаниям – они химически неактивны. Такая структура долго может сохранять химическую стабильность. А что ещё нужно для хранения наследственной информации? Именно эти особенности структуры ДНК определяют её способность кодировать и воспроизводить генетическую информацию.

Прочную структуру ДНК разрушить достаточно трудно. Тем не менее это происходит в клетке регулярно – при синтезе РНК и удвоением молекулы самой ДНК перед делением клетки.

Удвоение, репликация ДНК начинается с того, что особый фермент – ДНК-полимераза – расплетает двойную спираль и разъединяет её на отдельные нити – формируется редупликационная вилка. Фермент при этом действует подобно замку в застёжке-молнии. На каждой однонитчатой цепи – липких концах редупликационной вилки - из находящихся в кариоплазме свободных нуклеотидов синтезируется новая цепь по принципу комплементарности. В новых двух молекулах ДНК одна цепь остаётся исходной материнской, а вторая – новой дочерней. В результате вместо одной молекулы ДНК возникают две молекулы такого же точно нуклеотидного состава, как и первоначальная.

В живых системах мы встречаемся с новым типом реакций, неизвестными в неживой природе. Они называются реакциями матричного синтеза . Матричный синтез напоминает отливку на матрице: новые молекулы синтезируются в точном соответствии с планом, заложенным в структуре уже существующих молекул. В этих реакциях обеспечивается точная последовательность мономерных звеньев в синтезируемых полимерах. Мономеры поступают в определённое место на молекулы, служащие матрицей, где реакция протекает. Если бы такие реакции происходили в результате случайного столкновения молекул, они протекали бы бесконечно медленно. Синтез сложных молекул на основе матричного принципа осуществляется быстро и точно с помощью ферментов. Матричный синтез лежит в основе важнейших реакций синтеза нуклеиновых кислот и белков. Роль матрицы в клетке играют молекулы нуклеиновых кислот ДНК или РНК. Мономерные молекулы, из которых синтезируется полимер, - нуклеотиды или аминокислоты – в соответствии с принципом комплементарности располагаются и фиксируются на матрице в строго определённом порядке. Затем происходит соединение мономерных звеньев в полимерную цепь, и готовый полимер сходит с матрицы. После этого матрица готова к сборке новой точно такой же полимерной молекулы.

Реакции матричного типа – специфическая особенность живой клетки. Они являются основой фундаментального свойства всего живого – способности к воспроизведению себе подобного.

Функции нуклеиновых кислот – хранение и передача наследственной информации. В молекулах ДНК закодирована информация о первичной структуре белка. На матрице ДНК идёт синтез молекул и-РНК. Этот процесс называется «транскрипция». И-РНК в процессе «трансляции» реализует информацию в виде последовательности аминокислот в молекуле белка.

ДНК каждой клетки несёт информацию не только о структурных белках, определяющих форму клетки, но и обо всех белках-ферментах, белках-гормонах и других белках, а также строении всех видов РНК.

Возможно, нуклеиновые кислоты обеспечивают различные виды биологической памяти – иммунологическую, нейрологическую и т. д., а также играют существенную роль в регуляции биосинтетических процессов.


Похожая информация.


Нуклеиновые кислоты - это сложные, высокомолекулярные биопо­лимеры. Впервые эти вещества были обнаружены в ядре клетки, отсюда происходит их название (от лат. нуклеус - ядро). Позже было установле­но, что нуклеиновые кислоты присутствуют также и в цитоплазме клеток.

В расшифровке структуры нуклеиновых кислот принимали участие мно­гие ученые, такие как Ф. Мишер, Э. Чаргафф, Р. Франклин и другие, но окон­чательно разгадать структуру нуклеиновых кислот удалось в 1953 году аме­риканскому биохимику Дж. Уотсону и английскому генетику Ф. Крику, за что они были удостоены Нобелевской премии, а их открытие было призна­но одним из величайших открытий XX века.

Известны два типа нуклеиновых кислот:ДНК - дезоксирибонуклеиновые кислоты и РНК - рибонуклеиновые кислоты. Их молекулы представляют собой полимеры, мономерами которых являются нуклеотиды. Длина нитевидных молекул ДНК огромна, в клетках организма человека она составляет несколько сантиметров. Общая длина ДНК в 26 парах хромосом человека составляет примерно 1,5 метра. Молекулы РНК короче – длина каждой из них не превышает 0,01 мм.

Нуклеотиды – мономеры нуклеиновых кислот, в свою очередь, имеют сложное строение. Каждый нуклеотид состоит из трех частей: азотистого основания, простого углевода пентозы и остатка фосфорной кислоты:

Нуклеотиды ДНК отличаются по строению от нуклеотидов РНК. В со­став молекул ДНК входят нуклеотиды четырех типов, которые отличают­ся друг от друга азотистыми основаниями, среди которых известны: аденин, гуанин, цитозин и тимин. В зависимости от того, какое из четырех видов азо­тистых оснований входит в состав нуклеотида ДНК, он, соответственно, носит название аденинового, гуанинового, цитозинового или тиминового. Сокращенно нуклеотиды обозначаются буквами А, Г, Ц, Т. Углевод, входя­щий в состав нуклеотидов ЛНК. всегда один й тот же - это дезоксирибо-за, постоянными и неизменным компонентом всех нуклеотидов ДНК явля­ется и остаток фосфорной кислоты. Таким образом, один из нуклеотидов ДНК, например, адениновый А можно изобразить схематически так:

В одну цепь нуклеотиды соединяются путем образования ковалентных связей между дезоксирибозой одного и остатком фосфорной кислоты пос­ледующего нуклеотида (рис. 1).

Молекула ДНК представляет собой не одну, а две цепи нуклеотидов, которые сориентированы друг к другу азотистыми основаниями и между которыми возникают водородные связи. Количество таких связей между разными азотистыми основаниями неодинаково, и, вследствие этого, они могут соединяться только попарно: азотистое основание аденин одной цепи полинуклеотида всегда связано двумя водородными связями с тимином другой цепи, а гуанин - тремя водородными связями с азотистым основа­нием цитозином противоположной полинуклеотидной цепи. Такая способ­ность к избирательному соединению нуклеотидов называетсякомплементарностью (от лат. complementum - дополнение).


Рис. 1. Строение ДНК

В пространстве молекула ДНК представляет собой закрученную двойную спираль (вторичная структура ДНК), которая, в свою очередь, подвергается дальнейшей пространственной упаковке, формируя третичную структуру – суперспираль. Такое строение характерно для ДНК хромосом эукариот и обусловлено взаимодействием между ДНК и ядерными белками. Так, длина ДНК самой большой хромосомы человека равна 8 см, но при этом она скручена так, что, в конечном счете, не превышает 5 нм.

Основное свойство молекулы ДНК – способность к самоудвоению (репликации ) (рис. 2).

Перед репликацией двойная спираль молекулы ДНК раскручивается и распадается на две цепочки, каждая из которых служит матрицей (формой) для сборки на ней по

принципу комплементарности новой (дочерней) цепочки. Материалом для построения новой цепочки ДНК служат нуклеотиды, всегда имеющиеся в ядре в свободном состоянии. Этот процесс имеет место перед делением клетки и лежит в основе удвоения числа хромосом.

Рис. 2. Репликация двойной спирали ДНК

Нуклеотиды молекулы ДНК кодируют последовательность аминокислот в молекуле белка – в этом заключается основная функция ДНК – хранение наследственной информации. Одну аминокислоту в молекуле белка кодирует 3 нуклеотида молекулы ДНК. Ген – это участок молекулы ДНК в котором записана последовательность аминокислот одной молекулы белка.

Содержание

Аббревиатура клеточный ДНК многим знакома из школьного курса биологии, но мало кто сможет с легкостью ответить, что это. Лишь смутное представление о наследственности и генетике остается в памяти сразу после окончания учебы. Знание, что такое ДНК, какое влияние оно оказывает на нашу жизнь, порой может оказаться очень нужным.

Молекула ДНК

Биохимики выделяют три типа макромолекул: ДНК, РНК и белки. Дезоксирибонуклеиновая кислота – это биополимер, который несет ответственность за передачу данных о наследственных чертах, особенностях и развитии вида из поколения в поколение. Его мономером является нуклеотид. Что такое молекулы ДНК? Это главный компонент хромосом и содержит генетический код.

Структура ДНК

Ранее ученые представляли, что модель строения ДНК периодическая, где повторяются одинаковые группы нуклеотидов (комбинаций молекул фосфата и сахара). Определенная комбинация последовательности нуклеотидов предоставляет возможность «кодировать» информацию. Благодаря исследованиям выяснилось, что у разных организмов структура различается.

Особенно известны в изучении вопроса, что такое ДНК американские ученые Александер Рич, Дэйвид Дэйвис и Гэри Фелзенфелд. Они в 1957 году представили описание нуклеиновой кислоты из трех спиралей. Спустя 28 лет, ученый Максим Давидович Франк-Каменицкий продемонстрировал, как дезоксирибонуклеиновая кислота, которая состоит из двух спиралей, складывается Н-образной формой из 3 нитей.

Структура у дезоксирибонуклеиновой кислоты двухцепочечная. В ней нуклеотиды попарно соединены в длинные полинуклеотидные цепи. Эти цепочки при помощи водородных связей делают возможным образование двойной спирали. Исключение – вирусы, у которых одноцепочечный геном. Существуют линейные ДНК (некоторые вирусы, бактерии) и кольцевые (митохондрии, хлоропласты).

Состав ДНК

Без знания, из чего состоит ДНК, не было бы ни одного достижения медицины. Каждый нуклеотид – это три части: остаток сахара пентозы, азотистое основание, остаток фосфорной кислоты. Исходя из особенностей соединения, кислоты могут называться дезоксирибонуклеиновой или рибонуклеиновой. В состав ДНК входит огромное число мононуклеотидов из двух оснований: цитозин и тимин. Кроме этого, она содержит производные пиримидинов, аденин и гуанин.

Есть в биологии определение DNA – мусорная ДНК. Функции ее еще неизвестны. Альтернативная версия названия – «некодирующая», что не верно, т.к. она содержит кодирующие белки, транспозоны, но их назначение тоже тайна. Одна из рабочих гипотез говорит о том, что некоторое количество этой макромолекулы способствует структурной стабилизации генома в отношении мутаций.

Где находится­

Расположение внутри клетки зависит от особенностей вида. У одноклеточных ДНК находится в мембране. У остальных живых существ она располагается в ядре, пластидах и митохондриях. Если говорить о человеческой ДНК, то ее называют хромосомой. Правда, это не совсем так, ведь хромосомы – это комплекс хроматина и дезоксирибонуклеиновой кислоты.

Роль в клетке

Основная роль ДНК в клетках – передача наследственных генов и выживание будущего поколения. От нее зависят не только внешние данные будущей особи, но и ее характер и здоровье. Дезоксирибонуклеиновая кислота находится в суперскрученном состоянии, но для качественного процесса жизнедеятельности она должна быть раскрученной. С этим ей помогают ферменты - топоизомеразы и хеликазы.

Топоизомеразы относятся к нуклеазам, они способны изменять степень скрученности. Еще одна их функция – участие в транскрипции и репликации (делении клеток). Хеликазы разрывают водородные связи между основаниями. Существуют ферменты лигазы, которые нарушенные связи «сшивают», и полимеразы, которые участвуют в синтезе новых цепей полинуклеотидов.

Как расшифровывается ДНК

Эта аббревиатура для биологии является привычной. Полное название ДНК- дезоксирибонуклеиновая кислота. Произнести такое не каждому под силу с первого раза, поэтому часто в речи расшифровка ДНК опускается. Встречается еще понятие РНК – рибонуклеиновая кислота, которая состоит из последовательностей аминокислот в белках. Они напрямую связаны, а РНК является второй по важности макромолекулой.

ДНК человека

Человеческие хромосомы внутри ядра разделены, что делает ДНК человека самым стабильным, полным носителем информации. Во время генетической рекомбинации спирали разделяются, происходит обмен участками, а затем связь восстанавливается. За счет повреждения ДНК образовываются новые комбинации и рисунки. Весь механизм способствует естественному отбору. До сих пор неизвестно, как долго она отвечает за передачу генома, и какова ее эволюция метаболизма.

Кто открыл­

Первое открытие структуры ДНК приписывают английским биологам Джеймсу Уотсону и Френсису Крику, которые в 1953 году раскрыли особенности строения молекулы. Нашел же ее в 1869 году швейцарский врач Фридрих Мишер. Он изучал химический состав животных клеток с помощью лейкоцитов, которые массово скапливаются в гнойных поражениях.

Мишер занимался изучением способов отмывания лейкоцитов, выделял белки, когда обнаружил, что кроме них есть что-то еще. На дне посуды во время обработки образовался осадок из хлопьев. Изучив эти отложения под микроскопом, молодой врач обнаружил ядра, которые оставались после обработки соляной кислотой. Там содержалось соединение, которое Фридрих назвал нуклеином (от лат. nucleus - ядро).

Свойства ДНК определяются ее строением:

1. Универсальность - принципы построения ДНК для всех организмов одинаковы.

2. Специфичность - определяется соотношением азотистых оснований: А + Т,

которое специфично для каждого вида. Так у человека оно составляет 1,35, у бактерий – 0,39

Специфичность зависит от:

· количества нуклеотидов

· вида нуклеотидов

· расположение нуклеотидов в цепи ДНК

2. Репликация или самоудвоение ДНК: ДНК↔ДНК. Генетическая программа клеточных организмов записана в нуклеотидной последовательности ДНК. Для сохранения уникальных свойств организма необходимо точное воспроизведение этой последовательности в каждом последующем поколении. Во время деления клетки содержание ДНК должно удвоиться, чтобы каждая дочерняя клетка могла получить полный спектр ДНК, т.е. в любой делящейся соматической клетке человека должно быть скопировано 6,4*10 9 нуклеотидных пар. Процесс удвоения ДНК получил название репликации. Репликация относится к реакциям матричного синтеза. Во время репликации каждая из двух цепей ДНК служит матрицей для образования комплементарной (дочерней) цепи. Протекает она в S-период интерфазы клеточного цикла. Высокая надежность процесса репликации гарантирует практически безошибочную передачу генетической информации в ряду поколений. Пусковым сигналом для начала синтеза ДНК в S-периоде является так называемый S – фактор (специфические белки). Зная скорость репликации и длину хромосомы эукариот можно рассчитать время репликации, которое теоретически составляет несколько суток, а практически репликация осуществляется за 6 – 12 часов. Из этого следует, что репликация у эукариот одновременно начинается в нескольких местах на одной молекуле ДНК.

Единицей репликации является репликон. Репликон – это участок ДНК, где происходит репликация. Количество репликонов на одну интерфазную хромосому у эукариот может достигать 100 и более. В клетке млекопитающих может быть 20 – 30 тыс. репликонов, у человека – примерно 50 тыс. При фиксированной скорости роста цепи (у эукариот – 100 нуклеотидов в секунду) множественная инициация обеспечивает большую скорость процесса и снижение времени, необходимого для дупликации протяженных участков хромосом, т.е. у эукариот осуществляется полирепликонная репликация. (рис. 21)

Репликон содержит все необходимые гены и регуляторные последовательности, которые обеспечивают репликацию. Каждый репликон в процессе клеточного деления активируется один раз. Репликация контролируется на стадии инициации. Если процесс удвоения начался он будет продолжаться до тех пор, пока весь репликон не будет удвоен.

У прокариот вся ДНК является одним репликоном.

Рис.21. Репликация хромосомной ДНК эукариот. Репликация идет в двух направлениях из разных точек начала репликации (Ori) с образованием пузырьков. «Пузырь» или «глаз» это область реплицированной ДНК внутри нереплицированной. (А. С. Коничев, Г. А. Севастьянова, 2005, с. 213)

Ферменты, участвующие в процессе репликации, объединены в мультиферментативный комплекс . В репликации ДНК у прокариот участвует 15 ферментов, а у эукариот – более 30, т.е. репликация – это архисложный и суперточный многоступенчатый ферментативный процесс. В состав ферментативных комплексов входят следующие ферменты:

1) ДНК – полимеразы (I, III), катализируют комплементарное копирование, т.е. отвечают за рост дочерней цепи. (рис. 22) Прокариоты реплицируются со скоростью 1000 нуклеоти­дов в секунду, а эукариоты - 100 нуклеотидов в секунду. По­ниженная скорость синтеза у эукариот связана с затрудненной диссоциа­цией гистоновых белков, которые необходимо удалить для продвижения ДНК-полимеразы в репликативной вилке вдоль цепи ДНК.

2) ДНК - праймаза. ДНК – полимеразы могут удлинять полинуклеотидную цепь присоединяясь к уже имеющимся нуклеотидам. Поэтому, чтобы ДНК – полимераза смогла начать синтез ДНК, ей необходима затравка или праймер (от. англ. primer – затравка). ДНК – праймаза синтезирует такую затравку, которая затем замещается сегментами ДНК. (рис. 22).

3) ДНК – лигаза, соединяет фрагменты Оказаки друг с другом за счет образования фосфодиэфирной связи.

4) ДНК – хеликаза, расплетает спираль ДНК, разрывает водородные связи между ними. В результате образуются две одиночные разнонаправленные ветви ДНК (рис.22).

5) SSB – белки, связываются с одноцепочечной ДНК и стабилизируют её, т.е. они создают условия для комплементарного спаривания.

Репликация ДНК начинается не в любой случайной точке молекулы, а в специфических местах, называемых областью (точками) начала репликации (Ori). Они имеют определенные последовательности нуклеотидов, что облегчает разделение цепей (рис.21). В результате инициации репликации в точке Ori образуются одна или две репликативные вилки – места разделения материнских цепей ДНК. Процесс копирования продолжается до тех пор, пока ДНК полностью не удвоится или пока репликативные вилки двух соседних точек начала репликации не сольются. Точки начала репликации у эукариот разбросаны по хромосоме на расстоянии равном 20 000 пар нуклеотидов (рис.21).

Рис.22. Репликация ДНК (объяснение в тексте). (Б. Альбертс и др., 1994, т. 2, с. 82)

Фермент – хеликаза – разрывает водородные связи, т.е. расплетает двойную цепь, образуя две разнонаправленные ветви ДНК (рис.22). Одноцепочечные участки связываются специальными SSВ-белками , которые выстраиваются снаружи каждой материнской цепи и оттягивают их друг от друга. Это делает азотистые основания доступными для связывания с комплементарными нуклеотидами. В месте схождения этих ветвей по направлению репликации ДНК располагается фермент ДНК-полимераза, который катализирует процесс и кон­тролирует точность комплементарного синтеза. Особенностью работы данного фермента является его однонаправленность, т.е. построение дочерней цепи ДНК идет по направ­лению от 5" конца к 3" . На одной материнской цепи синтез дочерней ДНК идет непрерывно (лидирующая цепь). Она растет от 5" к 3" концу в направлении движения репликативной вилки и поэтому нуждается только в одном акте инициации. На другой материнской цепи синтез дочерней цепи идет в виде коротких фрагментов с обычной 5" - 3" полярностью и при помощи ферментов – лигаз происходит их сшивание в одну неперывную отстающую цепь. Поэтому для синтеза отстающей цепи требуется несколько актов (точек) инициации.

Такой способ синтеза назван прерывистой репликацией. Фрагментные участки, син­тезированные на отстающей цепи, в честь первооткрывателя названы фрагментами Оказаки . Они обнаружены у всех реп­лицирующихся ДНК, как у прокариот, так и у эукариот. Их длина соответствует 1000 – 2000 нуклеотидам у прокариот и 100 – 200 у эукариот. Таким образом, в результате репликации образуются 2 идентичные молекулы ДНК, в которых одна цепь материнская, другая вновь синтезированная. Такой способ репликации называют полуконсервативным. Предположение о таком способе репликации было сделано Дж. Уотсоном и Ф. Криком, а доказано в 1958г. М . Мезелсоном и Ф. Сталем . После репликации хроматин представляет собой систему из 2 декомпактизированных молекул ДНК, объединенных цен­тромерой.

В процессе репликации могут возникать ошибки, которые у прокариот и эукариот бывают с одной и той же час­тотой - одна на 10 8 -10 10 нуклеотидов , т.е. в среднем 3 ошибки на геном . Это доказательство высокой точности и скоординированности процессов репликации.

Ошибки репликации исправляются ДНК-полимеразой III («механизм корректорской правки») или системой репараций.

2. Репарация - это свойство ДНК восстанавливать свою цело­стность, т.е. исправлять повреждения. Передача наследственной информации в неискаженном виде важнейшее условие выживания как отдельного организма, так и вида в целом. Большинство изменений вредны для клетки, они либо приводят к мутациям, либо блокируют репликацию ДНК, либо вызывают гибель клетки. ДНК постоянно подвергается действию спонтанных (ошибки репликации, нарушение структуры нуклеотида и т.д.) и индуцированных (УФ – облучение, ионизирующая радиация, химические и биологические мутагены) факторов среды. В ходе эволюции выработалась система позволяющая исправлять нарушения в ДНК – система репарации ДНК . В результате её активности на 1000 повреждений ДНК только одно приводит к мутациям. Повреждение - любое изменение ДНК, которое вызывает отклонение от обычной двуцепочечной структуры:

1) появление одноцепочечных разрывов;

2) удаление одного из оснований, в результате чего его го­молог остается неспаренным;

3) замещение одного основания в комплементарной паре другим, неправильно спа­ренным с основанием-партнером;

4) появление ковалентных связей между основаниями од­ной цепи ДНК или между основаниями на противоположных цепях.

Репарация может проходить до удвоения ДНК (дорепликативная репарация) и после удвоения ДНК (пострепликативная). В зависимости от характера мутагенов и степени повреждения ДНК в клетке идет световая (фотореактивация), темновая, SOS-репарация и др.

Считают, что фотореактивация идет в клетке, если повреж­дения ДНК вызваны естественными условиями (физиологические особенности организма, обычные факторы среды, в том числе - ультрафиолетовые лучи). Восстановление целостности ДНК при этом, происходит с участием видимого света: репаративный фермент активируется квантами видимо­го света, соединяется с поврежденной ДНК, разъединяет пиримидиновые димеры нарушенного участка и восстанавливает целостность нити ДНК.

Темновая репарация (эксцизионная) наблюдается после действия ионизи­рующей радиации, химических веществ и т.д. Она включает удаление поврежденного участка, восстановление нормальной структуры молекулы ДНК (рис.23). Для этого типа репарации необходима вторая комплементарная цепь ДНК. Темновая репарация многосту­пенчата, в ней участвует комплекс ферментов, а именно:

1)фермент, узнающий поврежденный участок цепи ДНК

2)ДНК – эндонуклеаза, делает разрыв в поврежденной цепи ДНК

3) экзонуклеаза удаляет измененную часть нити ДНК

4) ДНК – полимераза I синтезирует новый участок ДНК взамен удаленного

5)ДНК- лигаза сшивает конец старой нити ДНК с вновь синтезированной, т.е. замыкает два конца ДНК (рис.23). В темновой репарации у человека принимают участие 25 белков-ферментов.

При больших повреждениях ДНК, которые угрожают жизни клеток, включается SOS-репарация . SOS-репарация была открыта в 1974 году. Такой тип репарации отмечают после действия больших доз ионизирующей радиации. Ха­рактерная черта SOS-репарации - неточность восстановления первичной структуры ДНК, в связи с чем она получила назва­ние репарации, склонной к ошибкам . Главная цель SOS-репарации сохранить жизнеспособность клетки.

Нарушение в системе репарации могут приводить к преждевременному старению, развитию онкологических заболеваний, болезням аутоиммунной системы, гибели клетки или организма.

Рис. 23. Репарация поврежденной ДНК путем замены модифицированных нуклеотидных остатков (темновая репарация или эксцизионная). (М. Сингер, П. Берг, 1998, т. 1, с.100)

Понравилась статья? Поделитесь с друзьями!