Правило ленца индукционный ток. Учебник














Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цель: изучить явление электромагнитной индукции (эми).

Образовательные:

  • изучить явление эми;
  • познакомить учащихся с правилом Ленца.
  • познакомить учащихся с применением явления эми.

Воспитательные:

  • на примере биографических фактов из жизни М.Фарадея, показать целеустремленность и трудолюбие ученого;

Развивающие:

  • развитие логического мышления для объяснения результатов опытов;
  • развитие интеллектуальных умений учащихся (наблюдать, применять ранее усвоенные знания в новой ситуации, анализировать, делать выводы);

Оборудование:

  • портрет Фарадея.
  • приборы для демонстрации электромагнитной индукции (два гальванометра, источники тока: ВС-24, РНШ;
  • разборный трансформатор и принадлежности к нему,
  • полосовые магниты- 2 шт., ключ, реостат на 15 Ом,
  • замкнутое алюминиевое кольцо, кольцо с разрезом),
  • ЭОР "Физика 7-11 классы. Библиотека наглядных пособий"- 1С.

Образование - раздел Электродинамика.

План урока:

  1. Организационный момент.
  2. Повторение.
  3. Мотивационный этап.
  4. Изучение нового материала.
  5. Закрепление.
  6. Итог урока.

Ход урока

1. Организационный момент. <слайд 1>, <слайд 2>

Здравствуйте, ребята. Сегодня мы с вами на уроке познакомимся с ЭМИ или ласково назовем ее Эмичка. Что расшифровывается как электромагнитная индукция.

2. Повторение. <слайд 3>

Что называется магнитным потоком?

Каковы способы изменения магнитного потока?

Замкнутый контур нормально расположен в магнитном поле.

Что будет происходить с магнитным потоком, при повороте контура на 180°?

Что такое электрический ток?

Каковы условия его существования?

3. Мотивационный этап: <слайд 4>

Учитель задает вопрос классу: Возможно ли наличие тока в проводнике без источника тока?

(учащиеся дают свои предположения )

Опыт: соединить два демонстрационных гальванометра.

Вращая ручку одного, наблюдаем за отклонением стрелки на втором гальванометре. (рис 1.)

Проблема : откуда появился ток в гальванометре?

Рис. 2

4. Изучение нового материала:

Опыт: внесение (вынесение) полосового магнита из замкнутого контура, соединенного с гальванометром. (рис.2)

Проблема: Откуда появился ток в замкнутом контуре?

(предположения учащихся )

При затруднении учащимся можно задать несколько подсказывающих вопросов: <слайд 12>

Что из себя представляет контур? (ответ: контур замкнутый)

Что существует вокруг полосового магнита? (ответ: вокруг магнита существует магнитное поле)?

Что появляется, когда в контур вносят (выносят) магнит? (ответ: замкнутый контур пронизывает магнитный поток)

Что происходит с магнитным потоком при внесении (вынесении) магнита в замкнутый контур? (ответ: магнитный поток изменяется)

Вывод: Причина возникновения электрического тока в замкнутом контуре - изменение магнитного потока, пронизывающего замкнутый контур.

Это явление впервые было обнаружено Майклом Фарадеем в 1820 году. Оно было названо явлением электромагнитной индукцией.

Учитель: сейчас послушаем сообщение о М. Фарадее (сообщение учащихся ) <слайд 5>

Учитель: Электромагнитная индукция - физическое явление, заключающееся в возникновении вихревого электрического поля, вызывающего электрический ток в замкнутом контуре при изменении потока магнитной индукции через поверхность, ограниченную этим контуром.

() <слайд 6>

Учитель: Ток, возникающий в замкнутом контуре, называется индукционным .

(учащиеся записывают в тетрадь )

Учитель: Рассмотрим все случаи возникновения индукционного тока в замкнутом контуре. Для этого показываю серию опытов, учащиеся должны попытаться объяснить и указать причину возникновения индукционного тока.

Опыт 1: внесение (вынесение) полосового магнита из замкнутого контура, соединенного с гальванометром.

Причина возникновения тока : изменение числа линий магнитной индукции.

Опыт 2: поворот рамки одного гальванометра, соединенного с другим гальванометром.

Причина возникновения тока: поворот рамки в магнитном поле.

Собираем электрическую цепь, состоящую из источника тока (ВС-24М, реостата на 15 Ом, ключа, разборного трансформатора, гальванометра - см. рис. 3)

Опыт 3 : замыкание (размыкание) ключа (рис. 3)

Причина возникновения тока: изменение силы тока в одной цепи приводит к изменению магнитной индукции.

Опыт 4 перемещение движка реостата. (рис.3)

Причина возникновения тока: изменение сопротивления в первой цепи приводит к изменению силы тока, а соответственно и изменению магнитной индукции рис. 3.

Учитель: Отчего зависит величина и направление индукционного тока?

Опыт: внесение (вынесение) магнита сначала северным полюсом, затем южным полюсом. (рис. 4)

Вывод : направление тока зависит от направления магнитного поля и направления движения магнита.

Опыт : внесение (вынесение) магнита в замкнутый контур сначала с одним магнитом, затем с двумя магнитами. (рис. 5)

Рис. 5

Вывод: величина тока зависит от величины магнитной индукции. рис. 5

Опыт: вносим магнит сначала медленно, затем быстро.

Вывод: величина тока зависит от скорости внесения магнита.

Учитель: Для определения направления индукционного тока в замкнутом контуре используется правило Ленца : Индукционный ток имеет такое направление, что созданный им магнитный поток через поверхность, ограниченную контуром, препятствует изменению магнитного потока, вызвавшего этот ток. (учащиеся записывают в тетрадь ) <слайд 7>

Опыт: демонстрация правила Ленца (c замкнутым и с разрезом кольцом)

(пояснения рисунками на доске)

5. Закрепление. <слайд 8>, <слайд 13,14>

Учитель: Применим данное правило для следующих случаев: (рис. 6)

(два случая учитель разбирает сам, записывая план решения на доске, два остальных случая учащиеся выполняют самостоятельно в тетрадях, двух учеников можно вызвать к доске, а можно предложить взаимоконтроль).

6. Домашнее задание. (на карточках) <слайд 9>

В стальной сердечник трансформатора, подключенного к напряжению 220В (РНШ) вносят замкнутый контур с лампочкой. Почему загорается лампочка при этом? Поясните рисунком. рис. 7.

Учитель: Явление электромагнитной индукции нашло широкое применение в технике: трансформаторы, поезда на магнитной подушке, металлоискатели (детекторы металлов), запись и информации на магнитные носители и чтение с них. <слайд 10>

Показ видеороликов о применении явления электромагнитной индукции: детектор металлов, запись информации на магнитные носители и чтение с них - диск "Физика 7-11 классы. Библиотека наглядных пособий" Образовательные комплексы.

7. Итог урока. <слайд 11>

1) В чем заключается явление ЭМИ?

2) Вспомним опыты, позволяющие наблюдать это явление.

3) Кто открыл явление ЭМИ?

4) Что мы определяли с помощью правила Ленца?

5) Применение ЭМИ.

Явление электромагнитной индукции заключается в том, что в результате изменения во времени магнитного потока, который пронизывает замкнутый проводящий контур, в контуре возникает электрический ток. Открыто это явление было физиком из Великобритании Максом Фарадеем в 1831 году.

Введем обозначения, необходимые нам для записи формулы. Для обозначения магнитного потока используем букву Ф, площади контура – S , модуля вектора магнитной индукции – B , α – это угол между вектором B → и нормалью n → к плоскости контура.

Магнитный поток, который проходит через площадь замкнутого проводящего контура, можно задать следующей формулой:

Φ = B · S · cos α ,

Проиллюстрируем формулу.

Рисунок 1 . 20 . 1 . Магнитный поток через замкнутый контур. Направление нормали n → и выбранное положительное направление l → обхода контура связаны правилом правого буравчика.

За единицу магнитного потока в С И принят 1 вебер (В б) . Магнитный поток, равный 1 В б, может быть создан в плоском контуре площадью 1 м 2 под воздействием магнитного поля с индукцией 1 Т л, которое пронизывает контур по направлению нормали.

1 В б = 1 Т л · м 2

Закон Фарадея

Изменение магнитного потока приводит к тому, что в проводящем контуре возникает ЭДС индукции δ и н д. Она равна скорости, с которой происходит изменение магнитного потока через ограниченную контуром поверхность, взятой со знаком минус. Впервые экспериментально установил это Макс Фарадей. Он же записал свое наблюдение в виде формулы ЭДС индукции, которая теперь носит название Закона Фарадея:

Определение 1

Закон Фарадея:

δ и н д = - ∆ Φ ∆ t

Правило Ленца

Определение 2

Согласно результатам опытов, индукционный ток, который возникает в замкнутом контуре в результате изменения магнитного потока, всегда направлен определенным образом. Создаваемое индукционным током магнитное поле препятствует изменению вызвавшего этот индукционный ток магнитного потока. Ленц сформулировал это правило в 1833 году.

Проиллюстрируем правило Ленца рисунком, на котором изображен неподвижный замкнутый проводящий контур, помещенный в однородное магнитное поле. Модуль индукции увеличивается во времени.

Пример 1

Благодаря правилу Ленца мы можем обосновать тот факт, что в формуле электромагнитной индукции δ и н д и ∆ Φ ∆ t противоположны по знакам.

Если задуматься о физическом смысле правила Ленца, то это частный случай Закона сохранения энергии.

Причин, по которым может происходить изменение магнитного потока, пронизывающего замкнутый контур, две:

  1. Изменение магнитного потока вследствие перемещения всего контура или отдельных его частей в магнитном поле, которое не изменяется со временем;
  2. Изменение магнитного поля при неподвижном контуре.

Перейдем к рассмотрению этих случаев подробнее.

Перемещение контура или его частей в неизменном магнитном поле

При движении проводников и свободных носителей заряда в магнитном поле возникает ЭДС индукции. Объяснить возникновение δ и н д можно действием силы Лоренца на свободные заряды в движущихся проводниках. Сила Лоренца здесь – это сторонняя сила.

Пример 2

На рисунке мы изобразили пример индукции, когда прямоугольный контур помещен в однородное магнитное поле B → направленное перпендикулярно плоскости контура. Одна из сторон контура перемещается по двум другим сторонам с некоторой скоростью.

Рисунок 1 . 20 . 3 . Возникновение ЭДС индукции в движущемся проводнике. Отражена составляющая силы Лоренца, которая действует на свободный электрон

На свободные заряды подвижной части контура воздействует сила Лоренца. Основная составляющая силы Лоренца в данном случае направлена вдоль проводника и связана с переносной скоростью зарядов υ → . Модуль этой сторонней силы равен:

F Л = e υ → B .

Работа силы F Л на пути l равна:

A = F Л · l = e υ B l .

По определению ЭДС:

δ и н д = A e = υ B l .

Значение сторонней силы для неподвижных частей контура равно нулю. Для соотношения δ и н д можно записать другой вариант формулы. Площадь контура с течением времени изменяется на Δ S = l υ Δ t . Соответственно, магнитный поток тоже будет с течением времени изменяться: Δ Φ = B l υ Δ t .

Следовательно,

δ и н д = ∆ Φ ∆ t .

Знаки в формуле, которая связывает δ и н д и ∆ Φ ∆ t , можно установить в зависимости от того, какие направления нормали и направления контура будут выбраны. В случае выбора согласованных между собой по правилу правого буравчика направлений нормали n → и положительного направления обхода контура l → можно прийти к формуле Фарадея.

При условии, что сопротивление всей цепи – это R , то по ней будет протекать индукционный ток, который равен I и н д = δ и н д R . За время Δ t на сопротивлении R выделится джоулево тепло:

∆ Q = R I и н д 2 ∆ t = υ 2 B 2 l 2 R ∆ t

Парадокса здесь нет. Мы просто не учли воздействие на систему еще одной силы. Объяснение заключается в том, что при протекании индукционного тока по проводнику, расположенному в магнитном поле, на свободные заряды действует еще одна составляющая силы Лоренца, которая связана с относительной скоростью движения зарядов вдоль проводника. Благодаря этой составляющей появляется сила Ампера F А → .

Для рассмотренного выше примера модуль силы Ампера равен F A = I B l . Направление силы Ампера таково, что она совершает отрицательную механическую работу A м е х. Вычислить эту механическую работу за определенный период времени можно по формуле:

A м е х = - F υ ∆ t = - I B l υ ∆ t = - υ 2 B 2 l 2 R ∆ t

Проводник, перемещающийся в магнитном поле, испытывает магнитное торможение. Это приводит к тому, что полная работа силы Лоренца равна нулю. Джоулево тепло может выделяться либо за счет уменьшения кинетической энергии движущегося проводника, либо за счет энергии, которая поддерживает скорость перемещения проводника в пространстве.

Изменение магнитного поля при неподвижном контуре

Определение 3

Вихревое электрическое поле – это электрическое поле, которое вызывается изменяющимся магнитным полем.

В отличие от потенциального электрического поля работа вихревого электрического поля при перемещении единичного положительного заряда по замкнутому проводящему контуру равна δ и н д в неподвижном проводнике.

В неподвижном проводнике электроны могут приводиться в движение только под действием электрического поля. А возникновение δ и н д нельзя объяснить действием силы Лоренца.

Первым, кто ввел понятие вихревого электрического поля, был английский физик Джон Максвелл. Случилось это в 1861 году.

Фактически, явления индукции в подвижных и неподвижных проводниках протекают одинаково. Так что в этом случае мы тоже можем использовать формулу Фарадея. Отличия касаются физической причины возникновения индукционного тока: в движущихся проводниках δ и н д обусловлена силой Лоренца, в неподвижных – действием на свободные заряды вихревого электрического поля, возникающего при изменении магнитного поля.

Рисунок 1 . 20 . 4 . Модель электромагнитной индукции

Рисунок 1 . 20 . 5 . Модель опытов Фарадея

Рисунок 1 . 20 . 6 . Модель генератора переменного тока

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Правило Ленца определяет направление индукционного тока, возникающего в результате электромагнитной индукции

Анимация

Описание

"Если металлический проводник передвигается вблизи гальванического тока или вблизи магнита, то в нем возбуждается гальванический ток такого направления, которое вызывало бы движение покоящегося провода в направлении, прямо противоположном направлению движения, навязанного здесь проводу извне, в предположении, что находящийся в покое провод может двигаться только в направлении этого последнего движения или прямо противоположном". Профессор петербургского университета Э.Х.Ленц, 1833 год.

Правило Ленца основано на обобщении опытов по электромагнитной индукции .

В сжатой форме правило Ленца можно сформулировать так:

возникающий в замкнутом проводнике индукционный ток имеет такое направление, чтобы препятствовать изменению потока магнитной индукции, которое его вызывает .

То есть индукционный ток создает через площадь, ограниченную контуром собственный поток магнитной индукции, компенсирующий изменение потока магнитной индукции, которое его вызывает:

dФ = (В , d S ) Ю dФ = B Ч dS Ч cos a ,

где a - угол между вектором магнитной индукции внешнего поля и нормалью к плоскости витков соленоида.

Рассмотрим некоторые примеры.

1. Возьмем соленоид (катушку) C , замкнутый через гальванометр G (рис.1).

Возникновение индукционного тока в соленоиде при приближении у нему постоянного магнита

Рис. 1

Будем приближать к одному из его концов постоянный магнит, например, северным полюсом. В соленоиде возникнет электрический ток, который обнаружится по отклонению стрелки гальванометра. Направлен индукционный ток против часовой стрелки, если смотреть на соленоид со стороны магнита.

При приближении магнита к соленоиду поток вектора магнитной индукции, пронизывающий витки соленоида, возрастает, так как увеличивается магнитная индукция поля магнита. Магнитное поле индукционного тока в соленоиде направлено из соленоида наружу (правило буравчика), то есть компенсирует нарастание поля магнита. Соответствует правилу Ленца.

2. Возьмем соленоид C , замкнутый через гальванометр G . Будем удалять от одного из его концов постоянный магнит (рис. 2).

Возникновение индукционного тока в соленоиде при удалении от него постоянного магнита

Рис. 2.

При удалении магнита от соленоида поток вектора магнитной индукции, пронизывающий витки соленоида, убывает, так как уменьшается магнитная индукция поля магнита. Магнитное поле индукционного тока в соленоиде направлено внутрь соленоида (правило буравчика), то есть компенсирует убывание поля магнита. Соответствует правилу Ленца.

Очевидно, что результат опытов не изменится, если магнит будет неподвижен, а соленоид перемещаться.

Анализируя результаты этих двух опытов, можно сделать еще один вывод: при приближении северного полюса магнита к соленоиду индукционный ток создает магнитное поле, индукция которого направлена навстречу индукции магнитного поля магнита, и, следовательно, магнит и соленоид отталкиваются, то есть между ними возникает сила противодействующая движению магнита, которое вызывает возникновение индукционного тока. При удалении магнита магнит и соленоид притягиваются, то есть снова между ними возникает сила противодействующая движению магнита.

Правило Ленца является следствием закона сохранения энергии. Действительно, индукционные токи, как всякие другие электрические токи, совершают некоторую работу. Значит при движении замкнутого проводника (соленоида) в магнитном поле должна быть произведена дополнительная работа внешних сил. Эта и есть та работа, которая возникает за счет сил препятствующих движению магнита.

Изменение потока через витки соленоида C наблюдается и при рассмотрении относительного движения магнита южным полюсом к соленоиду C , замены магнита соленоидом или витком с током, замыкания и размыкания цепи такого соленоида (или витка), а также взаимные повороты соленоида C и элемента, создающего магнитное поле.

Временные характеристики

Время инициации (log to от -10 до 2);

Время существования (log tc от 15 до 15);

Ключевые слова

  • магнитная индукция
  • электромагнитная индукция
  • магнитный поток
  • поток вектора магнитной индукции
  • замкнутый контур
  • замкнутый проводник
  • магнит
  • магнитное поле
  • электрический ток
  • индукционный ток
  • соленоид
  • виток
  • правило Ленца
  • закон Ленца
  • катушка

Разделы естественных наук:

Определение 1

Э.Х.Ленц предложил правило (закон) , который позволяет найти направление индукционного тока . В его формулировке он таков: «Если металлический проводник передвигается вблизи гальванического тока или вблизи магнита, то в нем возбуждается гальванический ток такого направления, которое вызвало бы движение покоящегося провода в направлении, прямо противоположном направлению движения , навязанного здесь проводу извне, в предположении, что находящийся в покое провод может двигаться только в направлении этого последнего движения или в прямо противоположном».

Определение 2

В настоящее время правило Ленца формулируют короче: «Направление индукционного тока таково, что его действие противоположно действию причины его вызывающей». Или: Токи индукции, которых появляются в проводнике в результате их движения в постоянном магнитном поле имеют такое направление, при котором пондемоторные силы магнитного поля, которые испытывают эти проводники, препятствуют движению проводников.

Это правило соблюдается во всех случаях возникновения индукции.

Рисунок 1.

Допустим, что индукция возникает в контуре (2) при его перемещении в магнитном поле контура с током (1) (рис.1). При этом появляется индукционный ток, имеющий такое направление, что сила взаимодействия с контуром (1) противодействует движению контура. Если контур (2) приближать к контуру (1), появляется ток $I_2"$, при этом магнитный момент этого тока направлен против поля тока $I_1$. На контур (2) действует сила, которая отталкивает его от контура (1). Если контур (2) удалять от контура (1) в контуре (2) возникнет ток $I^{""}_2,$ направление его момента совпадет с полем тока $I_1$, следовательно, сила, которая действует на контур (2) притягивает его к контуру (1).

Допустим, что оба контура неподвижны, в контуре (1) течет переменный ток $I_1$, изменения которого вызывает появление тока $I_2$. Направление тока во втором конуре таково, что создаваемый этим током магнитный поток $(Ф)$ стремится ослабить изменения внешнего потока, который ведет к возникновению индукционного тока. При увеличении тока $I_1$ увеличивается внешний магнитный поток, который направлен вправо, появляется ток $I_2"$, который создает поток, направленный влево (рис.1).

В случае если ток $I_1$ уменьшается, в контуре (2) появляется ток $I^{""}_2,$ магнитный поток которого направлен так же, как внешний поток, дополнительный магнитный поток поддерживает внешний поток без изменений.

Правило Ленца и закон сохранения энергии

Закон Ленца является следствием закона сохранения энергии. Индукционные токи, как и любые другие, производят работу. Например, если замкнутый проводник движется в магнитном поле, внешними силами должна быть выполнена дополнительная работа, так как индукционные токи взаимодействуют с магнитным полем, порождая силы, которые направлены противоположно движению.

Пример 1

Задание: Укажите направление индукционного тока, который возникает в контуре а) если магнит приближать к контуру; b) при удалении магнита от контура (рис.2). Объясните, как взаимодействуют магнит и виток с током в случаях a) и b).

Рисунок 2.

Решение:

Когда мы приближаем к контуру северный полюс магнита $(N)$, то на контуре возникает тоже северный магнитный полюс. Когда мы удаляем от контура северный полюс магнита, то на контуре возникает южный полюс. При этом одноименные полюса магнита отталкиваются, а разноименные притягиваются. Значит, когда возникает индукционный ток в контуре при приближении магнита к контуру, то силы взаимодействия между магнитом и индукционным током отталкивают магнит от витка, а в случае возникновения тока в контуре при удалении магнита, то виток с индукционным током и магнит притягиваются.

В соответствии с правилом Ленца, направления токов будут иметь направления, указанные на рис.3.

Рисунок 3.

Пример 2

Задание: Прямолинейный проводник длины $l$ движется параллельно самому себе в магнитном поле. Этот проводник может входить в состав замкнутой цепи, остальные части которой неподвижны. Найдите ЭДС, которая возникает в проводнике, укажите направление индукционного тока.

Решение:

Рисунок 4.

Обозначим через $v$ мгновенную скорость движения проводника, $dt$ - время движения проводника, тогда проводник опишет площадь равную:

За время $dt$ проводник пересечет все линии магнитной индукции, которые проходят через площадь $dS$. Изменение магнитного потока, следовательно, можно записать как:

где $B_n$ - составляющая магнитной индукции, которая перпендикулярна к площадке $dS$. Используя закон Фарадея, получим:

\[{{\mathcal E}}_i=-\frac{dФ}{dt}={-B}_nlv.\]

Направление индукционного тока и знак ЭДС определяется правилом Ленца. Ток направлен так, что механическая сила, действующая на проводник, противоположна скорости.

Ответ: ${{\mathcal E}}_i={-B}_nlv.$

На данном уроке, тема которого: «Правило Ленца. Закон электромагнитной индукции», мы узнаем общее правило, позволяющее определить направление индукционного тока в контуре, установленное в 1833 г. Э.X. Ленцем. Также рассмотрим опыт с алюминиевыми кольцами, наглядно демонстрирующий это правило, и сформулируем закон электромагнитной индукции

Приближением или удалением магнита от сплошного кольца мы меняем магнитный поток, который пронизывает площадь кольца. Согласно теории явления электромагнитной индукции, в кольце должен возникнуть индукционный электрический ток. Из опытов Ампера известно, что там, где проходит ток, возникает магнитное поле. Следовательно, замкнутое кольцо начинает вести себя как магнит. То есть происходит взаимодействие двух магнитов (постоянный магнит, который мы двигаем, и замкнутый контур с током).

Так как система не реагировала на приближение магнита к кольцу с разрезом, то можно сделать вывод, что индукционный ток в незамкнутом контуре не возникает.

Причины отталкивания или притягивания кольца к магниту

1. При приближении магнита

При приближении полюса магнита кольцо отталкивается от него. То есть оно ведет себя как магнит, у которого с нашей стороны такой же полюс, как у приближающегося магнита. Если мы приближаем северный полюс магнита, то вектор магнитной индукции кольца с индукционным током направлен в противоположную сторону относительно вектора магнитной индукции северного полюса магнита (см. Рис. 2).

Рис. 2. Приближение магнита к кольцу

2. При удалении магнита от кольца

При удалении магнита кольцо тянется за ним. Следовательно, со стороны удаляющегося магнита у кольца образовывается противоположный полюс. Вектор магнитной индукции кольца с током направлен в ту же сторону, что и вектор магнитной индукции удаляющегося магнита (см. Рис. 3).

Рис. 3. Удаление магнита от кольца

Из данного опыта можно сделать вывод, что при движении магнита кольцо ведет себя также подобно магниту, полярность которого зависит от того, увеличивается или уменьшается магнитный поток, пронизывающий площадь кольца. Если поток возрастает, то векторы магнитной индукции кольца и магнита противоположны по направлению. Если магнитный поток сквозь кольцо уменьшается со временем, то вектор индукции магнитного поля кольца совпадает по направлению с вектором индукции магнита.

Направление индукционного тока в кольце можно определить по правилу правой руки. Если направить большой палец правой руки по направлению вектора магнитной индукции, то четыре согнутых пальца укажут направление тока в кольце (см. Рис. 4).

Рис. 4. Правило правой руки

При изменении магнитного потока, пронизывающего контур, в контуре возникает индукционный ток такого направления, чтобы своим магнитным потоком компенсировать изменение внешнего магнитного потока.

Если внешний магнитный поток возрастает, то индукционный ток своим магнитным полем стремится замедлить это возрастание. Если магнитный поток убывает, то индукционный ток своим магнитным полем стремится замедлить это убывание.

Эта особенность электромагнитной индукции выражается знаком «минус» в формуле ЭДС индукции.

Закон электромагнитной индукции

При изменении внешнего магнитного потока, пронизывающего контур, в контуре возникает индукционный ток. При этом значение электродвижущей силы численно равно скорости изменения магнитного потока, взятой со знаком «-».

Правило Ленца является следствием закона сохранения энергии в электромагнитных явлениях.

Список литературы

  1. Мякишев Г.Я. Физика: Учеб. для 11 кл. общеобразоват. учреждений. - М.: Просвещение, 2010.
  2. Касьянов В.А. Физика. 11 кл.: Учеб. для общеобразоват. учреждений. - М.: Дрофа, 2005.
  3. Генденштейн Л.Э., Дик Ю.И., Физика 11. - М.: Мнемозина.

Домашнее задание

  1. Вопросы в конце параграфа 10 (стр. 33) - Мякишев Г.Я. Физика 11 (см. список рекомендованной литературы)
  2. Как формулируется закон электромагнитной индукции?
  3. Почему в формуле для закона электромагнитной индукции стоит знак «-»?
  1. Интернет-портал Festival.1september.ru ().
  2. Интернет-портал Physics.kgsu.ru ().
  3. Интернет-портал Youtube.com ().
Понравилась статья? Поделитесь с друзьями!